Ein Projekt des IVT, ETH Zürich und WWZ, Universität Basel
Dieses Dokument wird unter der Creative-Commons-Lizenz veröffentlicht.
Kontakt: Joseph Molloy (joseph.molloy@ivt.baug.ethz.ch)
Frühere und zukünftige Berichte finden Sie unter: https://ivtmobis.ethz.ch/mobis/covid19
Frühere Nachrichten (zum Ausblenden anklicken)
Am 16. März 2020 wurden 3700 Teilnehmer, die zwischen September 2019 und Januar 2020 an der MOBIS-Studie teilgenommen haben, eingeladen, die von MotionTag entwickelte Smartphone-App “Catch-My-Day” erneut zu installieren. Die freiwillige Aufzeichnung ihres Mobilitätsverhaltens ermöglichte es uns, die Auswirkungen der verschiedenen Massnahmen während der Pandemie zu verfolgen. Fast ein Jahr später dauert die Pandemie noch immer an und viele Teilnehmer sind immer noch Teil der Studie.
Die Ergebnisse werden mit den Mobilitätsdaten der ersten Wochen aus der ursprünglichen MOBIS-Studie dargestellt, die zwischen dem 1. September und dem 1. November 2019 erfasst wurden und somit als Baseline dienen, lange bevor die Pandemie die Schweiz erreichte. Derzeit werden nur Reisen innerhalb der Schweiz berücksichtigt, obwohl auch Daten zu grenzüberschreitenden Reisen verfügbar sind.
Bis zum Start der zweiten COVID19-Welle im Herbst 2020 verringerte sich die Teilnehmerzahl von ca. 1’300 auf 500 - aus guten Gründen, wie z.B. ein neues Smartphone, Betriebssystem-Updates und so weiter. Etwa 250 Teilnehmer sind nach einer zweiten Einladung im Oktober 2020 wieder zum Panel zurückgekehrt. Wir sind sehr dankbar für ihr Engagement. Dennoch haben wir gerne zugestimmt, als das LINK Institut uns anbot, weitere Teilnehmer für das Panel zu rekrutieren. Diese weitere Vergrösserung unserer Stichprobe ermöglicht es uns, den bestehenden Kern zu ergänzen. Bis Mitte Januar 2021 haben sich insgesamt 393 zusätzliche Teilnehmer über LINK angemeldet.
Für die MOBIS-Studie kamen nur Teilnehmer in Frage, die an mindestens drei Tagen pro Woche ein Auto benutzten - was die Stichprobe etwas verzerrt gegenüber der Schweizer Allgemeinbevölkerung. Für die von LINK rekrutierten Teilnehmern haben wir keine Nutzungsbedingung auferlegt, da wir nun eine repräsentativere Stichprobe der Bevölkerung anstreben. Dies bedeutet jedoch, dass die Stichprobe ab 2021 nicht mehr mit jener von 2019 und 2020 vergleichbar ist, da das Mobilitätsverhalten zwischen diesen Gruppen unterschiedlich ist. Daher werden für alle Analysen, die Vergleiche mit der Zeit vor der Pandemie anstellen, nur Link-Teilnehmer einbezogen, welche die MOBIS-Kriterien erfüllen.
Die Anzahl der Tracking-Teilnehmer an jedem Tag, die zur Berechnung der durchschnittlichen Tageswerte verwendet wird, schliesst alle Teilnehmer ein, die vor oder nach diesem Tag Wege aufgezeichnet haben und entspricht einem rollenden Verfahren. Dies ermöglicht die Berücksichtigung von Teilnehmern, die zu Hause bleiben, und erlaubt gleichzeitig die Berücksichtigung von Personen, welche sich von der Studie abgemeldet haben.
Das GPS-Reisetagebuch “Catch-My-Day” (für iOS und Android) kann eine Verzögerung von 2-3 Tagen aufweisen, bevor die Tracks (aufgezeichnete Wege) für die Analyse verfügbar sind. Die Gewichtung nach aktiven Teilnehmern trägt dem Rechnung, kann die Ergebnisse früherer Berichte aber ändern, wenn der Bericht aktualisiert wird. Die Gewichtung wird anhand der repräsentativen Stichprobe berechnet, die wir im Rahmen des MOBIS-Rekrutierungsprozesses erhalten haben.
Die Farben in den folgenden Grafiken sind so gewählt, dass sie die Gruppierung der Verkehrsmittel anzeigen. Grün steht für aktive Verkehrsmittel, Blau/Violett für öffentliche Verkehrsmittel, Braun für Auto und Schwarz für die Gesamtheit. Diese Farben werden in den folgenden verkehrsmittelbezogenen Diagrammen konsistent verwendet.
Hier wird die täglich durchschnittliche zurückgelegte Distanz der Teilnehmer, differenziert nach Geschlecht, dargestellt. Zur besseren Lesbarkeit wird ein gleitender 7-Tage-Durchschnitt verwendet. Es zeigt sich ein deutlicher Rückgang der Wege durch den Lockdown zu Beginn der Pandemie, aber auch den allmählichen Anstieg in den Folgemonaten. Das Reiseaufkommen erholt sich langsam wieder auf das Niveau von vor der Pandemie, was ebenfalls während dem Sommer vor zweiten Welle im Herbst 2020 zu beobachten war.
[1] “Chartdaten herunterladen”
Im Folgenden wird die Anzahl der Teilnehmer dargestellt, die an einem bestimmten Tag “mobil” sind. Mobile Teilnehmer haben mindestens eine Bewegung ausserhalb des Wohnsitzes in der Catch-my-day-App aufgezeichnet (z.B. selbst einen kurzen Spaziergang). Die nach unten ausschlagenden Spitzen zeigen die Wochenenden an. Der gleitende 7-Tage-Durchschnitt wird durch die schwarze Linie dargestellt, die sich seit dem Ende des Lockdowns relativ stabil verhält. Dies ist auch für die zweite Teilsperrung zu beobachten. Verschiedene kleine Schwankungen werden vor allem durch Feiertage verursacht, an denen die Menschen zu Hause bleiben.
[1] “Chartdaten herunterladen”
Hier ist die Aufschlüsselung nach Verkehrsmittel zu sehen. Die Werte sind relativ zum Verhalten vor der Pandemie zu verstehen, berechnet auf der Basis des Durchschnitts von September und Oktober 2019. Besonders auffällig ist der starke Anstieg des Radverkehrs während des Lockdowns, der auch im Sommer 2020 nicht abschwächte. Die Nutzung der öffentlichen Verkehrsmittel brach drastisch ein und erholte sich viel langsamer als andere Verkehrsmittel. Sie liegt immer noch bei nur etwa 50% des Niveaus von vor der Pandemie.
Eine gestapelte Version dieses Diagramms, in der die öffentlichen Verkehrsmittel zusammengefasst sind, macht deutlich, wie sich der Gesamtanteil der Verkehrsmittel verändert hat. Es ist klar ersichtlich, wie die Anteile von Auto und Fahrrad zugunsten der öffentlichen Verkehrsmittel zugenommen haben.
[1] “Chartdaten herunterladen”
Die folgende zwei Abbildungen zeigen Regressionsschätzungen basierend auf einem Poisson-Modell. Ein solches Modell kann verwendet werden, um die durchschnittliche proportionale Änderung einer Variable zu schätzen und zusätzlich für mögliche Störfaktoren zu kontrollieren. Wir kontrollieren für Wettereffekte und personenspezifische Effekte um unbeobachtete und über die Zeit konstante Heterogenität zu absorbieren. Die vertikalen Linien bzw. die farbigen Bänder markieren die 90%-Konfidenzintervalle.
[1] “Chartdaten herunterladen”
In diesem Abschnitt werden neben der Tagesdistanz, die mit den vorherigen Grafiken in Abschnitt 5 übereinstimmt, zusätzliche Indikatoren nach Verkehrsträger dargestellt. Auch diese Diagramme zeigen die prozentuale Veränderung im Vergleich zum Basiszeitraum im Jahr 2019. Besonders interessant ist die Veränderung der Reisedistanz. Die Wege zu Fuss waren während dem Lockdown deutlich länger im Vergleich zur Zeit nach dessen Ende. Andererseits sind die Busfahrten seit Beginn der Pandemie kürzer geworden, was möglicherweise auf den Trend zum Home-Office zurückzuführen ist.
[1] “Chartdaten herunterladen”
Die folgenden Grafiken zeigen die Veränderung der durchschnittlichen Tagesdistanz (in km) nach verschiedenen soziodemografischen Variablen. Die Linien wurden ebenfalls geglättet, um die Lesbarkeit zu verbessern. Es gilt zu beachten, dass es sich für einige demografische Merkmale nur um eine kleine Anzahl von Teilnehmern handelt (siehe Abschnitt Verteilungen). Besonders interessant sind die Unterschiede nach Haushaltsgrösse während und nach dem Lockdown, sowie das Verhalten der Altersgruppe 25-35 Jahre im Sommer 2020. Während des ersten Lockdowns reduzierten höhere Einkommensgruppen ihre täglichen Fahrten stärker.
Der Zweck jeder Reise wird durch die am Zielort ausgeführte Aktivität bestimmt. Er wurde anhand eines Random-Forest-Modells berechnet. Dabei wurden Trainingsdaten von Personen verwendet, die den Zweck ihrer Aktivitäten freiwillig aufgezeichnet und validiert haben. Einige Reisezwecke zeigen eine größere Verschiebung im Modalsplit als andere. Beim Einkaufen zeigt sich, dass das Radfahren im Jahr 2020 beliebter wurde (Lebensmitteleinkäufe und Spontaneinkäufe werden nicht unterschieden). Zudem ist beobachtbar, dass der Zug höchst selten verwendet wird, während lokale öffentliche Verkehrsmittel wie der Bus oder das Tram öfter benutzt werden.
Für das Pendeln zur Arbeit hat die Nutzung des ÖV vor allem während des Lockdowns am meisten Anteile verloren. Seither hat das Gehen zu Fuss einen kontinuierlich steigenden Anteil, was vor allem auf die Verlagerung zum Home-Office und die damit verbundene, kleiner werdende Anzahl Arbeitswege zurückzuführen seinüfte.