Un projet de IVT, ETH Zurich et WWZ, Université de Bâle
Ce document est publié sous la licence Creative Commons.
Contact: Daniel Heimgartner (daniel.heimgartner@ivt.baug.ethz.ch)
Les rapports précédents et futurs peuvent être consultés à l’adresse suivante: https://ivtmobis.ethz.ch/mobis/covid19/fr
7 déc :
8 juin :
31 mai :
25 janvier :
14 décembre :
Nouvelles précédentes (cliquez pour agrandir)
18 novembre :
2 novembre:
6 octobre:
28 septembre:
24 août:
11 août:
6 août :
13 juillet:
29 juin :
15 juin:
25 mai :
18 mai :
11 mai:
4 mai:
27 avril:
20 avril:
13 avril:
Le 16 mars 2020, les 3700 participants qui ont complété l’étude MOBIS entre septembre 2019 et janvier 2020 ont été invités à réinstaller l’application de suivi GPS et de journal de voyage “Catch-My-Day”, développée par MotionTag. Grâce à cet enregistrement volontaire de leur comportement de mobilité, nous avons pu suivre l’impact des différentes mesures spéciales prises pendant la pandémie. Un an plus tard, la pandémie est toujours en cours et de nombreux participants sont encore en train de participer.
Les résultats sont présentés en comparaison avec les données de mobilité des premières semaines de l’étude MOBIS originale, qui ont été enregistrées entre le 1er septembre et le 1 novembre 2019, et servent donc de référence bien avant que la pandémie ne frappe la Suisse. Seuls les déplacements à l’intérieur de la Suisse sont actuellement pris en compte, bien que des données sur les déplacements transfrontaliers soient disponibles.
La participation est passée d’environ 1’300 participants à environ 500 au début de la deuxième vague COVID-19 à l’automne 2020. Cela peut être dû à plusieurs facteurs, tels qu’un nouveau smartphone, des mises à jour du système d’exploitation, etc. Environ 250 ont réintégré le panel après une deuxième invitation en octobre 2020. Nous leur sommes très reconnaissants pour leur engagement. Néanmoins, nous avons volontiers accepté la proposition de LINK de recruter davantage de participants au panel, ce qui nous a permis de complémenter le noyau existant. À la mi-janvier, 393 participants supplémentaires avaient rejoint le panel via LINK.
Pour l’étude MOBIS, les participants n’étaient éligibles que s’ils utilisaient une voiture au moins 3 jours par semaine, ce qui biaise l’échantillon par rapport à la population suisse en général. Nous n’avons pas imposé de condition similaire aux participants recrutés par LINK, afin d’obtenir un échantillon plus représentatif de la population. Cela signifie toutefois que l’échantillon de 2021 ne peut plus être comparé à celui de 2019 et 2020, car le comportement des deux groupes en matière de mobilité est très différent. Ainsi, seuls les participants LINK qui répondent aux critères MOBIS sont inclus dans les analyses qui établissent des comparaisons avec la période avant la pandémie.
Le nombre de participants actifs chaque jour, utilisé pour calculer les valeurs moyennes quotidiennes, comprend tous les participants qui ont enregistré des données avant ou après cette date. Cela permet de considérer ceux qui restent à la maison tout en tenant compte de ceux qui se sont retirés de l’enquête.
Il peut y avoir un délai de 2 à 3 jours avant que les données de l’application Catch-My-Day (pour iOS et Android) ne soient disponibles pour analyse. La pondération par le nombre de participants actifs permet de tenir compte de ce délai, mais les résultats des rapports précédents peuvent changer lors des mises à jour. Les pondérations sont calculées en fonction de l’échantillon représentatif obtenu lors du processus de recrutement MOBIS.
Les couleurs choisies pour les graphiques ci-dessous servent à regrouper les différents modes de transport : les verts indiquent les modes actifs, les bleus/violets les transports publics, le marron correspond à la voiture et le noir au total de tous les modes. Ces couleurs apparaissent dans tous les graphiques relatifs aux modes de transport.
La distance quotidienne moyenne parcourue par les participants est présentée ici en fonction du sexe. Une moyenne mobile sur 7 jours est utilisée pour faciliter la lecture. On constate une nette réduction du nombre de déplacements due au confinement au début de la pandémie, suivie d’une augmentation progressive au cours des mois suivants. Le nombre de déplacements revient lentement au niveau d’avant la pandémie, comme cela a été le cas pendant la période relativement normale précédant la deuxième vague de l’automne 2020.
Le graphique ci-dessous montre le nombre de participants mobiles pour un jour donné, c’est-à-dire ceux ayant enregistré des déplacements dans l’application Catch-my-day, même une courte promenade. Les creux correspondent aux week-ends. La moyenne mobile sur 7 jours est représentée par la ligne noire, qui est relativement stable depuis la fin du premier confinement et même lors du deuxième semi-confinement. D’autres fluctuations sont principalement dues aux jours fériés, où les gens restent à la maison.
La répartition par mode de transport est présentée dans cette section. Les valeurs relatives au comportement avant la pandémie ont été calculés sur la base de la moyenne de septembre et octobre 2019. La forte augmentation de la pratique du vélo observée pendant le confinement et maintenue tout au long de l’été 2020 est particulièrement évidente. L’utilisation des transports publics s’est effondrée pendant le confinement et a repris beaucoup plus lentement que les autres modes de transport, se situant toujours à environ 50 % seulement des niveaux enregistrés avant la pandémie.
Cette section présente également une version superposée de ce graphique, dans laquelle les modes de transport public sont regroupés. Celui-ci met en évidence l’évolution globale des parts modales, la voiture et le vélo ayant pris le dessus sur les transports publics.
[1] “Télécharger les données du graphique”
Les deux graphiques suivants présentent des estimations de régression basées sur un modèle de Poisson. Un tel modèle peut être utilisé pour estimer la variation proportionnelle moyenne d’une variable d’intérêt tout en contrôlant les facteurs confondants. Nous contrôlons les effets de la météo et les effets fixes de la personne afin de tenir compte de l’hétérogénéité non observée constante dans le temps. Les barres verticales ou les bandes colorées indiquent les intervalles de confiance à 90 %.
Cette section présente des indicateurs supplémentaires par mode de transport, en plus de la distance quotidienne correspondant aux graphiques précédents de la section 5. Ici encore, ces graphiques présentent la variation en pourcentage par rapport à la période de référence de 2019. La variation des distances parcourues est particulièrement intéressante. D’une part, les déplacements à pied étaient beaucoup plus longs pendant le confinement, mais ce comportement ne s’est pas maintenu par la suite. D’autre part, les déplacements en bus se sont raccourcis depuis le début de la pandémie, ce qui pourrait s’expliquer par le travail à domicile.
L’évolution de la moyenne des kilomètres quotidiens parcourus selon différentes données sociodémographiques peut être visualisée à l’aide des onglets ci-dessous. Les lignes ont été lissées pour en améliorer la lisibilité. Veuillez noter que le nombre de participants est faible pour certaines données sociodémographiques (voir la section sur la distribution des participants). Les différences observées en fonction de la taille du ménage pendant et après le confinement sont particulièrement intéressantes, tout comme le comportement de la tranche d’âge des 25-35 ans pendant l’été 2020. Pendant le premier confinement, le groupe aux revenus les plus élevés a réduit davantage ses déplacements quotidiens.