MOBIS-COVID19/26

Résultats du 26/10/2020 (Deuxième vague)

Un projet de IVT, ETH Zurich et WWZ, Université de Bâle

This work is licensed under Creative Commons Creative Commons License

Contact: Joseph Molloy ()

Les rapports précédents et futurs peuvent être consultés à l`adresse suivante: https://ivtmobis.ethz.ch/mobis/covid19/fr



1 Mises à jour

6 octobre :

28 septembre :

24 août:

11 août:

6 août :

13 juillet:

Nouvelles précédentes (cliquez pour agrandir)

29 juin :

  • Nouvelle analyse sur l’évolution des parts modales du transport - lien.

15 juin:

  • Les données peuvent maintenant être téléchargées directement pour certaines figures souhaitées. Veuillez citer les sources IVT, ETHZ et WWZ, Uni Basel.
  • Les comptages horaires montrent maintenant la journée entière : la périod de minuit à 4h du matin n’est plus exclu.
  • Analyse du télétravail - lien.
  • En réponse à de nombreuses questions, nous aimerions préciser que la période de référence 2019 couvre les mois de septembre et octobre 2019.
  • Résultats par genre corrigé
  • Nouvelle analyse des vitesses de déplacement en voiture par classe de distance - lien.

25 mai :

  • Le nombre d’activités par jour ajusté de manière à ne pas inclure la première activité à domicile par jour.
  • Conversion de tableaux longs en graphiques.

18 mai :

  • Premier rapport après l’assouplissement des mesures de confinement du 11 mai.
  • La période de référence 2019 a été raccourcie pour n’inclure que les mois de septembre et octobre - Cela affecte principalement les statistiques pour le vélo.

11 mai:

  • Nouveau graphique de l’espace d’activité et du rayon quotidien - lien.

4 mai:

  • Nouveau graphique issu d’une enquête en ligne auprès des participants sur la perception du risque - lien.
  • Résumé des points clés et ajustements de formatage.

27 avril:

  • Nouveau tableau sur l’évolution du type d’activité par zone géographique.

20 avril:

  • Participants mobiles par jour.
  • Les participants non mobiles sont désormais inclus dans les statistiques sur les espaces d’activité, en plus d’un nouveau tableau sur les espaces d’activité hebdomadaires médians.
  • Nouveaux graphiques, incluant la distance de trajet moyenne par mode.
  • Améliorations de la mise en page et autres petites corrections.

13 avril:

  • Les semaines précédentes ont été regroupées et colorées en gris dans certains graphiques.

2 Introduction

Le 16 mars 2020, les 3700 participants qui ont complété l’étude MOBIS entre septembre 2019 et janvier 2020 ont été invités à réinstaller l’application d’enregistrement GPS et de journal de voyage ‘Catch-My-Day’, développée par MotionTag, pour enregistrer leur comportement de mobilité pendant la période des mesures spéciales mises en œuvre pour contrôler la propagation du coronavirus. Les 4 premières semaines de données de mobilité de l’étude MOBIS originale sont prises comme référence pour chaque participant afin de comparer les comportements de mobilité actuels. Ces 4 semaines commencent entre le 1er septembre et le 15 novembre, selon le participant. Seuls les déplacements en Suisse sont actuellement pris en compte, bien que des données sur les déplacements transfrontaliers soient disponibles.

Un panel d’environ 250 participants était déjà en cours de suivi avant que les participants ne soient de nouveau invités. Cela permet d’obtenir des résultats pour les semaines précédant le début officiel de l’étude MOBIS:COVID-19, bien que la taille de l’échantillon soit beaucoup plus petite, et donc les résultats.

Dans l’étude MOBIS, les participants n’étaient éligibles que s’ils utilisaient une voiture au moins 3 jours par semaine - ce qui éloigne l’échantillon de la population suisse en général. Le nombre de participants au suivi chaque jour utilisé pour calculer les valeurs quotidiennes moyennes comprend tous les participants qui ont enregistré des suivis avant ou après cette date. Cela permet de prendre en compte ceux qui restent à la maison tout en tenant compte des abandons de l’enquête.

Le journal de voyage GPS utilisé, Catch-My-Day (pour iOS et Android) peut avoir un délai de 2 à 3 jours avant que les trajets ne soient disponibles pour l’analyse. Le dimensionnement en fonction des participants actifs permet de tenir compte de ce délai, mais les résultats des rapports précédents peuvent changer lors de la mise à jour du rapport.

3 Distance quotidienne moyenne

Télécharger les données du graphique


4 Journées actives

Télécharger les données du graphique

5 Évolution des kilomètres parcourus par mode de transport

Télécharger les données du graphique

6 Indicateurs clés par mode

Télécharger les données du graphique

7 Variation des kilomètres parcourus selon:

8 Analyse de l’objet du trajet

9 Vitesses de circulation routière

Le graphique suivant montre l’effet de la crise COVID-19 sur les vitesses de déplacement médianes en voiture pendant la semaine, excluant les weekends et les jours fériés. Pendant la période de confinement du 16 mars au 11 mai, une augmentation des vitesses aux heures de pointe a été observée, indiquant une diminution de la congestion routière. Depuis l’assouplissement des mesures, les vitesses aux heures de pointe sont revenues aux valeurs pré-COVID-19, signe que la congestion routière est revenue à son niveau habituel.

Télécharger les données du graphique

10 Évolution des parts modales du transport

Un diagramme ternaire est la représentation graphique de triplets de données numériques. Il convient pour représenter une somme constante, qui est décomposée en trois valeurs. La figure suivante montre un exemple d’un tel diagramme avec un seul point. Le triplet correspondant à ce point peut être lu en suivant les lignes vertes : A=0.5, B=0.3 et C=0.2. La somme des trois valeurs est égale à 1.

Les diagrammes ternaires suivants montrent l’évolution des parts modales au cours de la crise COVID-19, pour différents types d’abonnements aux transports publics (AG, demi-tarif et autres). Les modes sont regroupés dans les catégories suivantes :

Pendant le confinement, une part plus importante de kilomètres et de déplacements a été effectuée en utilisant des modes individuels motorisés et non motorisés par rapport à la période de référence. Après le confinement, la part des transports publics a augmenté et la part des modes non motorisés a diminué, dans les deux cas légèrement. La part des modes individuels motorisés reste plus importante que pendant la période de référence.

11 Réduction des kilomètres parcourus selon la situation professionnelle

Les participants à MOBIS:COVID-19 ont été invités à faire part de leur situation professionnelle le 24.04.2020. Les graphiques suivants utilisent ces résultats, la situation professionnelle étant imputée à l’aide d’indicateurs sociodémographiques pour ceux qui n’ont pas répondu. Plus précisément, nous avons demandé le nombre de jours de travail à la fois à domicile et en dehors du domicile, et ceux-ci ont ensuite été regroupés dans les catégories ci-dessous :

Télécharger les données du graphique (Lieu de travail)

Télécharger les données du graphique (Chomâge partiel)


12 Réduction des kilomètres parcourus par canton

Télécharger les données du graphique

13 Durée de trajet par mode de transport et par genre

Télécharger les données du graphique

14 Longueur de trajet moyenne par mode de transport (km)

Télécharger les données du graphique


15 Espace d’activité et rayon de déplacement quotidien

Une définition couramment utilisée de l’espace d’activité est l’ellipse de confiance à 95% des lieux d’activité, dans ce cas pondérée par leur durée. Dans l’analyse suivante, les activités du lieu de résidence sont incluses, pour ceux qui avaient l’application activée ce jour-là. Il s’agit d’une mesure importante qui donne une idée de la zone dans laquelle les déplacements sont effectués. Le rayon de déplacement quotidien est également présenté.

Télécharger les données du graphique


16 Comptages horaires

Le nombre de trajets commencés par heure. L’axe des y est normalisé par la valeur horaire maximale dans le graphique.

Télécharger les données du graphique (total)

Télécharger les données du graphique (by transport mode)

17 Types d’activités et zonage

Environ 30% des activités ont été volontairement étiquetées avec leur objectif par les participants utilisant l’application. Des travaux sont en cours afin d’imputer les objectifs pour le reste des activités. Les activités sont affectées à la classification de zone la plus proche dans un rayon de 100 m, sur la base d’une classification de zone simplifiée de l’Office fédéral du développement territorial (ARE). Le graphique suivant montre comment la durée de l’activité et le nombre d’activités ont changé entre la période de référence en 2019 et la période du COVID-19.

Veuillez noter que seules les activités de loisirs stationnaires sont incluses, et non la marche, le cyclisme, la randonnée, etc.

18 Participation

19 Perception du risque

Une première analyse de l’enquête sur la perception du risque dans le cas d’une infection COVID-19 montre que les participants évaluent les risques de différentes conséquences différemment pour eux-mêmes et pour la population suisse. Les participants considèrent que, par rapport à l’ensemble de la population suisse, il est moins probable qu’ils éprouvent eux-mêmes des symptômes graves nécessitant une hospitalisation ou des symptômes mortels. Tant les hommes que les femmes semblent surestimer la probabilité de décès en considérant que la voie asymptomatique est moins probable. Si les valeurs médianes des différentes catégories de symptômes ne diffèrent pas beaucoup entre les hommes et les femmes, l’éventail des valeurs pour les hommes est un peu plus large que pour les femmes.

20 Variations dans les distributions

Les graphiques suivants montrent les caractéristiques de l’échantillon MOBIS:COVID-19 par rapport à l’échantillon MOBIS original. Il y a quelques petites différences, mais les échantillons sont généralement cohérents. Ce graphique sera étendu pour être comparé aux données pertinentes du recensement.


Comparaison avec le dernier Microrecensement mobilité et transports (MZ) 2015
Covid
MZ
06.04.2020
Ce rapport
N % N % N %
Argovie 86 5.2 37 6.3 4,325 7.6
Bâle-Campagne 189 11.4 60 10.2 1,940 3.4
Bâle-Ville 40 2.4 17 2.9 1,555 2.7
Berne 192 11.6 67 11.4 7,244 12.7
Fribourg 8 0.5
1,942 3.4
Genève 128 7.7 39 6.6 3,062 5.4
Schwytz 17 1.0 7 1.2 1,005 1.8
Soleure 19 1.1 8 1.4 1,813 3.2
Vaud 297 17.9 81 13.8 5,303 9.3
Zurich 682 41.0 268 45.7 10,410 18.2
Autre 4 0.2 3 0.5 18,491 32.4

21 Pondération de l’échantillon

Afin de prendre en compte les variations dans la taille et la composition de l’échantillon, des pondérations ont été calculées pour chaque participant, puis appliquées pour chaque semaine de l’étude MOBIS-Covid (les semaines de la période de référence étant incluses). Cela permet de corriger les résultats correspondant à des semaines où un groupe démographique particulier était sur- ou sous-représenté. À partir des données récoltées parmi les 21 571 participants qui ont complété le questionnaire d’introduction, la pondération a été réalisée en utilisant la méthode dite d’« ajustement proportionnel itératif » (Iterative Proportional Fitting) prenant en compte les attributs suivants : âge, genre, niveaux de revenu et d’éducation, possession éventuelle de moyens de transports et accessibilité du lieu de résidence. La pondération des données collectées n’a eu que peu d’impact sur les résultats.

22 Conclusions mises à jour

En date du 2020-10-26, l’étude de suivi MOBIS:COVID-19 a enregistré 645,451 voyages-personnes depuis le début du printemps. Cette étude comprend aussi deux courtes enquêtes sur la situation professionnelle et la santé des participants. Un maximum de 1,427 personnes et une moyenne de 845 ont participé. Nous utilisons l’application de suivi pour smartphone Catch-my-Day, qui est basée sur la technologie de MotionTag. L’échantillon est assez comparable, en ce qui concerne les données sociodémographiques, au dernier microrecensement fédéral de 2015, mais il présente un biais en faveur des hommes à plus haut revenu, ayant un niveau d’éducation plus élevé et possédant un abonnement pour les transports publics. Les parties les plus denses des régions germanophones et francophones du pays sont également sur-représentées dans notre échantillon. Les conclusions sont basées sur des résultats pondérés qui garantissent que l’échantillon correspond à l’échantillon représentatif d’environ 20’000 personnes invitées à l’étude MOBIS originale. Les pondérations ont été calculées en fonction de l’âge, du sexe, de l’éducation, des revenus, de la possession d’un outil de mobilité et du niveau d’accessibilité du lieu de domicile de la personne.

Notre étude n’est pas la seule source en Suisse à avoir suivi l’impact de la pandémie et des mesures mises en œuvre pour la maîtriser. Le panel Intervista a été financé par différents offices fédéraux au cours des derniers mois. Les données de Google ont l’avantage d’être disponibles dans le monde entier, mais uniquement à une plus faible résolution spatiale et sans aucune donnée sociodémographique. Nous pouvons nous appuyer sur les réponses plus détaillées des participants concernant leurs données sociodémographiques et leurs habitudes. Les principales observations portent sur l’acceptation continue du “travail à domicile (TAD)” et le transfert modal lors de la reprise des volumes de déplacements et des kilomètres parcourus. Il est également important de noter que les changements observés sont globalement indépendants des conditions sociales.

La part des jours actifs, c’est-à-dire mobiles, montre l’anticipation du confinement, puis la reprise et la stabilisation à environ 80 % de sa valeur initiale en août. Ce chiffre est nettement inférieur à la part de 90+% à laquelle on pourrait s’attendre (Madre et al., 2007). Cette part de jours actifs plus faible doit être dûe à un mélange du TAD, des personnes en congés et des nouveaux chômeurs. Nous ne savons pas encore comment les entreprises traiteront le TAD dans les prochaines semaines. Certaines entreprises ont annoncé clairement qu’elles ne rappelleraient pas leurs employés au bureau, par exemple Facebook, Twitter, PSA, tandis que d’autres, comme Stadler, ont annoncé qu’elles les rappelleraient. Si elle repartait à la hausse, cette demande réduite se heurterait à un réseau routier où les vitesses moyennes sont déjà à leur niveau d’avant la pandémie – des conditions qui pourraient entraîner une augmentation des embouteillages.

La population s’est détournée des gros véhicules à haute capacité; les bus, les trams et les trains restent impopulaires. Après un évitement presque total dans les premières semaines suivant le début du confinement, leur fréquentation a diminué de 40 à 60 % par rapport à 2019. En moyenne, la circulation automobile s’est complètement rétablie. De même, la marche à pied a complètement récupéré. Il convient de noter que leur demande n’a jamais baissé de la même manière que pour les autres modes de transport.

La surprise a été, et est toujours, l’augmentation de l’utilisation du vélo, soutenue par un boom dans l’acquisition de vélos. Alors qu’au départ, cette augmentation semblait être principalement due aux loisirs et à la remise en forme, la récente imputation des motifs de déplacement a montré une progression du vélo pour tous les motifs, les loisirs et le shopping étant les plus importants. Les déplacements domicile-travail à vélo ont également augmenté, mais moins fortement (environ 40 % contre 60 à 80 % pour les autres motifs). Il est intéressant de voir comment la concurrence croissante pour l’espace routier depuis la fin du confinement a atténué la pratique du vélo. La nouvelle liberté en matière de répartition du temps est visible dans le vélo de loisir pendant la journée.

Enfin, l’expérience de la période COVID-19 confirme les résultats des expériences antérieures de télétravail (Pendyala et al., 1991). Elles avaient montré que le kilométrage total n’est pas réduit, car les personnes utilisaient le temps libéré pour d’autres déplacements. Ici, les travailleurs en chômage partiel suivent les tendances et voyagent un peu plus que les autres travailleurs. Ceux qui travaillent à domicile voyagent moins que ceux qui doivent se rendre sur leur lieu de travail, mais la différence n’est pas aussi importante qu’on pourrait le penser.

Références:

Madre, J.-L., K.W. Axhausen and W. Brög (2007) Immobility in travel diary surveys, Transportation, 34 (1) 107-128.

Pendyala, R.M., Goulias, K.G. and R. Kitamura (1991) Impact of telecommuting on spatial and temporal patterns of household travel, Transportation, 18 (4) 383-409.